4 research outputs found

    Numerical Investigation of Parameters Impacting the Wall Thickness of Carbon Nanotubes Manufactured by Template-Based Chemical Vapor Deposition

    Get PDF
    Template-based chemical vapor deposition (TB-CVD) is a versatile technique for manufacturing carbon nanotubes (CNTs) or CNT-based devices for various applications. In this process, carbon is deposited by thermal decomposition of a carbon-based precursor gas inside the nanoscopic cylindrical pores of anodized aluminum oxide (AAO) templates to form CNTs. Experimental results show CNT formation in templates is controlled by TB-CVD process parameters, such as time, temperature and flow rate. Optimization of this process is done empirically, requiring tremendous time and effort. Moreover, there is a need for a more comprehensive and low cost way to characterize the flow in the furnace in order to understand how process parameters may affect CNT formation. In this report, we describe the development of four, three-dimensional numerical models, each varying in complexity, to elucidate the thermo-fluid behavior inside the TB-CVD process. Using computational fluid dynamic (CFD) commercial codes, the four models were compared to determine how the presence of the template and boat, composition of the precursor gas, and consumption of species at the template surface affect the temperature profiles and velocity fields in the system. The most accurate model will be used to conduct particle injection/tracking near the templates and to characterize the particle residence time as a function of time and consumption rate. The developments in this work build the groundwork for explaining how flow characteristics affect carbon deposition on templates in any CVD reactor

    Methods and Algorithms for Cardiovascular Hemodynamics with Applications to Noninvasive Monitoring of Proximal Blood Pressure and Cardiac Output Using Pulse Transit Time

    Get PDF
    Advanced health monitoring and diagnostics technology are essential to reduce the unrivaled number of human fatalities due to cardiovascular diseases (CVDs). Traditionally, gold standard CVD diagnosis involves direct measurements of the aortic blood pressure (central BP) and flow by cardiac catheterization, which can lead to certain complications. Understanding the inner-workings of the cardiovascular system through patient-specific cardiovascular modeling can provide new means to CVD diagnosis and relating treatment. BP and flow waves propagate back and forth from heart to the peripheral sites, while carrying information about the properties of the arterial network. Their speed of propagation, magnitude and shape are directly related to the properties of blood and arterial vasculature. Obtaining functional and anatomical information about the arteries through clinical measurements and medical imaging, the digital twin of the arterial network of interest can be generated. The latter enables prediction of BP and flow waveforms along this network. Point of care devices (POCDs) can now conduct in-home measurements of cardiovascular signals, such as electrocardiogram (ECG), photoplethysmogram (PPG), ballistocardiogram (BCG) and even direct measurements of the pulse transit time (PTT). This vital information provides new opportunities for designing accurate patient-specific computational models eliminating, in many cases, the need for invasive measurements. One of the main efforts in this area is the development of noninvasive cuffless BP measurement using patient’s PTT. Commonly, BP prediction is carried out with regression models assuming direct or indirect relationships between BP and PTT. However, accounting for the nonlinear FSI mechanics of the arteries and the cardiac output is indispensable. In this work, a monotonicity-preserving quasi-1D FSI modeling platform is developed, capable of capturing the hyper-viscoelastic vessel wall deformation and nonlinear blood flow dynamics in arbitrary arterial networks. Special attention has been dedicated to the correct modeling of discontinuities, such as mechanical properties mismatch associated with the stent insertion, and the intertwining dynamics of multiscale 3D and 1D models when simulating the arterial network with an aneurysm. The developed platform, titled Cardiovascular Flow ANalysis (CardioFAN), is validated against well-known numerical, in vitro and in vivo arterial network measurements showing average prediction errors of 5.2%, 2.8% and 1.6% for blood flow, lumen cross-sectional area, and BP, respectively. CardioFAN evaluates the local PTT, which enables patient-specific calibration and its application to input signal reconstruction. The calibration is performed based on BP, stroke volume and PTT measured by POCDs. The calibrated model is then used in conjunction with noninvasively measured peripheral BP and PTT to inversely restore the cardiac output, proximal BP and aortic deformation in human subjects. The reconstructed results show average RMSEs of 1.4% for systolic and 4.6% for diastolic BPs, as well as 8.4% for cardiac output. This work is the first successful attempt in implementation of deterministic cardiovascular models as add-ons to wearable and smart POCD results, enabling continuous noninvasive monitoring of cardiovascular health to facilitate CVD diagnosis

    Application of Variational Principle to Form Reduced Fluid-Structure Interaction Models in Bifurcated Networks

    Get PDF
    Reduced fluid-structure interaction models have received a considerable attention in recent years being the key component of hemodynamic modeling. A variety of models applying to specific physiological components such as arterial, venous and cerebrospinal fluid (CSF) circulatory systems have been developed based on different approaches. The purpose of this paper is to apply the general approach based on Hamilton’s variational principle to create a model for a viscous Newtonian Fluid - Structure Interaction (FSI) in a compliant bifurcated network. This approach provides the background for a correct formulation of reduced FSI models with an account for arbitrary nonlinear visco-elastic properties of compliant boundaries. The correct boundary conditions are specified at junctions, including the interface between 3D and 1D models. The hyperbolic properties of the derived mathematical model are analyzed and used, constructing a monotone finite volume numerical scheme, second-order accuracy in time and space. The computational algorithm is validated by comparison of numerical solutions with the exact manufactured solutions for an isolated compliant segment and a bifurcated structure. The accuracy of applied total variation diminishing (TVD) and Lax-Wendroff schemes are analyzed by comparison of numerical results to the available analytical smooth and discontinuous solutions, demonstrating a superior performance from the TVD algorithm

    Variational Approach of Constructing Reduced Fluid-Structure Interaction Models in Bifurcated Networks

    Get PDF
    Reduced fluid-structure interaction models have received a considerable attention in recent years being the key component of hemodynamic modeling. A variety of models applying to specific physiological components such as arterial, venous and cerebrospinal fluid (CSF) circulatory systems have been developed based on different approaches. The purpose of this paper is to apply the general approach based on Hamilton’s variational principle to create a model for a viscous Newtonian fluid - structure interaction (FSI) in a compliant bifurcated network. This approach provides the background for a correct formulation of reduced FSI models with an account for arbitrary nonlinear visco-elastic properties of compliant boundaries. The correct boundary conditions are specified at junctions, including matching points in a combined 3D/1D approach. The hyperbolic properties of derived mathematical model are analyzed and used, constructing the monotone finite volume numerical scheme, second-order accuracy in time and space. The computational algorithm is validated by comparison of numerical solutions with the exact manufactured solutions for an isolated compliant segment and a bifurcated structure. The accuracy of applied TVD (total variation diminishing) and Lax-Wendroff methods are analyzed by comparison of numerical results to the available analytical smooth and discontinuous solutions
    corecore